B2.1 Introduction to Representation Theory
 Problem Sheet 1, MT 2017

1. Let G be a finite group and k be a field. Let $k G$ be the group algebra as defined in the notes. Let $\mathcal{F}(G, k)$ be the k-vector space of functions $f: G \rightarrow k$. Endow $\mathcal{F}(G, k)$ with a ring structure given by the convolution:

$$
\left(f_{1} \star f_{2}\right)(g)=\sum_{h \in G} f_{1}\left(g h^{-1}\right) f_{2}(h), \quad f_{1}, f_{2} \in \mathcal{F}(G, k) .
$$

Prove that $\mathcal{F}(G, k)$ and $k G$ are isomorphic as k-algebras. (N.B.: When considered with the pointwise multiplication, $\mathcal{F}(G, k)$ is not isomorphic to $k G$.)
2. Let G be a finite group and $\rho: G \rightarrow G L(V)$ be a G-representation on the k-vector space V. Recall that a G-stable subspace of V is a vector subspace $U \subset V$, such that $\rho(g)(U) \subseteq U$ for all $g \in G$.
Let S_{n} be the symmetric group of permutations in n letters. Consider the natural permutation representation of S_{n} on $V=\mathbb{C}^{n}, \rho: S_{n} \rightarrow G L\left(\mathbb{C}^{n}\right)$,

$$
\rho(\sigma)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right), x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C} .
$$

Determine all the S_{n}-stable subspaces of V.
3. Let A be an algebra over a field k with identity 1_{A}. Recall that a subspace B of A is called a subalgebra if $1_{A} \in B$, and whenever $b_{1}, b_{2} \in B$, this implies that $b_{1} \cdot b_{2} \in B$. The centre of A is defined to be the set

$$
Z(A)=\{x \in A \mid a x=x a \text { for all } a \in A\} .
$$

(a) Show that $Z(A)$ is a subalgebra of A.
(b) Let $A=A_{1} \times A_{2}$ be the product of algebras $A_{i}, i=1,2$. Identify the centre $Z(A)$ in terms of the centres $Z\left(A_{1}\right)$ and $Z\left(A_{2}\right)$.
(c) Show that the centre of $M_{n}(k)$ consists precisely of the scalar multiples of the identity matrix.
4. Let G be a finite group. We determine a basis for the centre of the group algebra $\mathbb{C} G$. Assume that G has s conjugacy classes, denoted by $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$. Define the elements $C_{i}=\sum_{x \in \mathcal{C}_{i}} x$ in the group algebra $\mathbb{C} G$.
(a) Show that $C_{i} \in Z(\mathbb{C} G)$.
(b) Show that $\left\{C_{1}, \ldots, C_{s}\right\}$ is a basis of $Z(\mathbb{C} G)$.
5. Suppose A is a k-algebra and V is some A-module, let $\theta: A \rightarrow \operatorname{End}_{k}(V)$ be the corresponding representation. Assume that U is a submodule of V. Show that there is a basis of V such that for every $a \in A$ the matrix of $\theta(a)$ has block form

$$
\theta(a)=\left(\begin{array}{cc}
\theta_{1}(a) & \theta_{2}(a) \\
0 & \theta_{3}(a)
\end{array}\right)
$$

where θ_{1} and θ_{3} describe the actions on U and on V / U. Suppose there is such basis for which $\theta_{2}(a)=0$ for all $a \in A$. Show that then V is the direct sum $V=U \oplus W$ where W is some submodule of V.
6. Let k be a field of prime characteristic p, let G be a finite group and Ω a G-set. We assume that G acts transitively on Ω, that is, for any $x, y \in \Omega$, there exists $g \in G$ such that $g x=y$. We consider the following two subsets of the permutation module $M=k \Omega$:

$$
\begin{aligned}
M_{1} & :=k \cdot\left(\sum_{\omega \in \Omega} b_{\omega}\right) \\
M_{2} & :=\left\{\sum_{\omega \in \Omega} \lambda_{\omega} b_{\omega} \in M \mid \sum_{\omega \in \Omega} \lambda_{\omega}=0\right\} .
\end{aligned}
$$

(a) Show that M_{1} and M_{2} are submodules of M. What are the vector space dimensions of M_{1} and M_{2} ? Describe the representations corresponding to M_{1} and M / M_{2} respectively.
(b) Prove that M_{1} is a direct summand of M if and only if p is coprime to $|\Omega|$.
(c) Assume that $\operatorname{char}(k)=p$ is a divisor of the order of G and let $\Omega=$ G. Prove that the trivial module M_{1} is a submodule of the regular module $k G$. Show that M_{1} has no complement in $k G$, that is, there exists no submodule T of $k G$ with $k G=M_{1} \oplus T$.

